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ABSTRACT

Cloud operators utilize collective communication optimizers to en-

hance the e�ciency of the single-tenant, centrallymanaged training

clusters they manage. However, current optimizers struggle to scale

for such use cases and often compromise solution quality for scal-

ability. Our solution, TE-CCL, adopts a tra�c-engineering-based

approach to collective communication. Compared to a state-of-the-

art optimizer, TACCL, TE-CCL produced schedules with 2× better

performance on topologies TACCL supports (and its solver took a

similar amount of time as TACCL’s heuristic-based approach). TE-

CCL additionally scales to larger topologies than TACCL. On our

GPU testbed, TE-CCL outperformed TACCL by 2.14× and RCCL

by 3.18× in terms of algorithm bandwidth.

CCS CONCEPTS

• Networks→ Network design and planning algorithms; Traf-

�c engineering algorithms; • Computer systems organization→

Interconnection architectures.
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1 INTRODUCTION

Collective communication libraries (CCLs) like MSCCL [23], TA-

CCL [33], and Blink [35] optimize data transfers in distributed ML

training. They take a topology and a demand as input and output
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a set of routes and a schedule that either maximizes bandwidth

utilization, minimizes job completion time, or both, as illustrated

in Figure 1. Here, demand is the amount of data each GPU wants

to send to other GPUs in the topology, common examples of which

include AllToAll, AllGather, and AllReduce.

Operators want these CCLs to produce near-optimal schedules

for the collective communication problem to maximize the e�-

ciency of their single-tenant training clusters, as GPUs are expen-

sive and scarce. They use CCLs to support parallelized training

jobs (model or data) in data centers with heterogeneous server

con�gurations. They also use CCLs to search for well-provisioned

topologies, evaluate hardware architectures, or co-optimize various

aspects of distributed training [22, 36, 37] — optimizers guide these

explorations.

Traditional, manual collective communication strategies are of-

ten wasteful and ine�cient. For example, prior work reports the

GPUs in BERT [9] and DeepLight [8] spent 11% and 63% of the

time idle respectively [33]. Faster GPUs and larger models will only

emphasize ine�ciencies in these communication schedules.

Recent CCLs attempt to automatically schedule communication

to improve performance and utilization. While successful in many

cases, they struggle to support the largest of today’s training tasks

in large cloud providers like Microsoft. These recent CCL solutions,

in broad terms, take one of two approaches: precise modeling and

heuristic-based modeling.

Optimizers like MSCCL [5] precisely model all aspects of the

system and its compute, and they attempt to achieve a near-optimal

solution through techniques like SAT solvers. These approaches

do not scale beyond one or two chassis and become intractable

for typical large distributed training tasks (often at least 30–60

chassis [6]).

In reaction to these scalability concerns, a second class of ap-

proaches falls back on increasingly rough heuristics to �nd the

solution more quickly [33, 37]. Unfortunately, these heuristics sacri-

�ce considerable performance to simplify the problem. For example,

TACCL [33]’s heuristics separate routing (the path packets take)

from scheduling (when each chunk is sent on each link) and under-

perform hand-crafted solutions by a factor of 2 or more. Similarly,

the SPFF schedule in [37] explores only a small subset of the feasi-

bility space, which causes performance gains to fall apart outside

of a small set of well-de�ned topologies.

https://doi.org/10.1145/3651890.3672249
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Figure 1: An illustration of the collective communication

problem. The input is a demand matrix and capacitated net-

work topology. Links are bi-directional with capacity I bits/s,

and, for simplicity, chunks are I bits. We show the allocation

on link n1 → n2.

We argue that it was too early to give up on near-optimal solu-

tions for CCLs. We observe that the adjacent �eld of Tra�c Engi-

neering shares striking similarities with the collective communica-

tion optimization problem in its inputs, constraints, and objective

functions, all while producing near-optimal solutions. Crucially,

TE algorithms avoid any sizable performance sacri�ces to (already)

scale beyond the sizes we require for current training tasks — most

recent productionWANTE deployments [20] are approximately the

same size as the topologies considered in recent work in collective

communication [33]. Other production TE solutions demonstrate

utility on networks of thousands of nodes [17, 19].

We acknowledge that there are concrete di�erences between

the two problems, and we do not know which will scale faster in

the future; however, our community has successfully deployed TE

algorithms at massive production scales [20], which suggests, at a

minimum, that today’s distributed ML training jobs may bene�t

from similar lessons. Our system, TE-CCL, proves this is feasible.

We show TE-CCL can improve upon state-of-the-art solutions by

over 2× on a two-chassis NDv2 topology [3] (Figure 14) and can

scale signi�cantly further.

We credit TE-CCL’s formulation, scalability, and performance to

our ability to borrow ideas from scalable production TE systems.

TE solutions give us a model of the physical problem (i.e., the �ow-

conservation constraints and the capacity constraints) and make it

easier to reason about a formulation that is otherwise di�cult [23,

33]. But the analogy is not exact:

• Discretized sends: TE problems mostly focus on tra�c bundles

with high rates and the problem of allocating a �xed fraction of

link capacity to each demand. Instead, CCLs have to schedule

small- to medium-sized demands, which introduces more struc-

ture and adds new and, in some cases, hard-to-model constraints

and dependencies.

• In-network copies: TE problems often assume �ow conservation

as a fundamental constraint; in contrast, collectives bene�t sig-

ni�cantly from copying data at intermediate GPUs, e.g., for tree

broadcast/reduce patterns.

• Latency and queuing: TE problems get away with focusing on

steady-state e�ects and are able to make �uid-�ow assumptions

about data delivery because they assume large tra�c bundles.

In contrast, we cannot ignore the e�ects of propagation and

queuing delay for small transfers; modeling them is essential to

CCL scheduling.

• Support for storage and caching: TE problems generally assume

that data is received and sent as soon as possible [4]; in contrast,

as we show in §6, we can speed up solvers substantially if we

use the available GPU memory.

Others have explored a subset of these features in isolation in the

TE domain (e.g., [17] supports deadlines on �xed-size transfers,

[21] allows for store-and-forward, and [11, 27] consider multicast),

but we need to reconsider the problem formulation signi�cantly to

model the combination.

Our solution, TE-CCL, is a scalable mixed-integer linear program

(MILP) with optimality gap guarantees [4]. Similar to other CCLs

like TACCL [33] and MSCCL [5], we designed TE-CCL for the

scenario where the operator has full control of the infrastructure.

The scheduler only needs to run infrequently each time the operator

provisions a new workload. However, unlike prior work, TE-CCL

scales to much larger collectives than TACCL and MSCCL, and

it substantially improves solution quality compared to this prior

work. For certain collectives, we can further scale our solution by

converting the MILP into an LP by removing all integer variables. In

the general case, we improve scalability by partitioning the problem

in time, using a technique inspired by the �∗ [12] algorithm from

robotics.

TE-CCL’s solutions outperform the state-of-the-art scalable so-

lution, TACCL [33]. We show a minimum of 2× performance im-

provement on the same 2-chassis NDv2 topology used by TACCL.

As part of TE-CCL, we are also able to algorithmically account for

multi-tenant and heterogeneous topologies, which are critical for

cloud-scale GPU clusters1.

• We re-examine recent claims that signi�cant approximation is

needed to scale CCLs to large distributed ML training tasks and

construct TE-CCL to disprove those claims.

• We develop a novel formulation of the CCL problem that sup-

ports the full set of features supported by prior CCLs and also

model network e�ects more completely.

• We evaluate TE-CCL on topologies from prior work and a large

public cloud. We show it scales and improves solution quality

by more than 2× in terms of algorithm bandwidth. On our AMD

GPU testbed (Figure 15), TE-CCL outperformed TACCL by 2.14×

and RCCL by 3.18×.

This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION

We present background on collective communication and motivate

the need for scalable communication schedules for ML collectives.

We then describe TE formulations and how they relate to collective

communication optimization.

2.1 The Need for Fast Collective Scheduling

Distributed training jobs that run on multiple GPUs use data paral-

lelism (which aggregates gradients across GPUs) or model paral-

lelism (which aggregates intermediate data across GPUs) to speed

1This work does not investigate how to implement themulti-tenant schedule in practice
but only provides a formulation that can solve for a multi-tenant demand matrix.
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Figure 2: Examples of three aspects of the CCL problem that are essential for accurate modeling but whose combination is

not well-handled by similar formulations. These types of inaccuracies lead solvers to make poor decisions. si are the starting

location of chunks (shaded boxes), and each chunk is of size 1 MB. di are the destinations. Link labels show <latency> (in -s) /

<bandwidth> (in MB/s).

up training. In these settings, Collective Communication Libraries

(CCLs) optimize this cross-GPU communication by optimizing

routes and schedules for the particular hardware con�guration [23,

33].

Collective schedules were traditionally hand-optimized for each

new collective and class of topologies, e.g., in or using NCCL [16] —

a process that was inaccurate, time-consuming, and error-prone,

particularly for large and/or heterogenous deployments.

Recent collective communication optimizers seek automation.

To use these libraries, applications specify (1) the “collective,” i.e., a

relationship between a set of GPU’s input and output bu�ers; (2) the

“demand matrix,” i.e., the amount of data to be sent between each

input bu�er and output bu�er; (3) the topology, i.e., the connectivity,

latency, and capacity of each link; and (4) an objective.

Collective optimizers typically represent their objectives in terms

of the “U−V” cost model where U is the �xed delay data experiences

when it goes over a link (which includes propagation and processing

delay), and V represents the transmission delay associated with

sending 1 bit of data over a link (the inverse of the link capacity). A

data chunk of size ! thus incurs a cost of U + !V when sent over a

link. Collectives implicitly model each link’s capacity constraints

through this notation — when a link has less capacity available, the

data takes longer to traverse it.

The output of these optimizers speci�es which and how much of

the data each GPU should send on each link at each point in time

in a way that optimizes the user’s objective, respects the network

capacity constraints, and results in the correct data in the output

bu�er at each GPU.

2.2 Relationship with TE Solutions

Tra�c Engineering (TE) is a problem in computer networks that

arises most frequently in the context of managed Wide Area Net-

works (WANs), and most recently, those of cloud networks [1, 13,

15, 20, 25].

A primer on TE formulations. Multi-commodity �ow problems

in TE route speci�c demands (with a given source and destination)

in a way that meets the capacity constraints of the network. Experts

usually model TE in one of two forms: a path [13, 15] or edge

formulation [4]. We focus on the edge formulation here, but our

discussion also applies to the path form. In its most basic format, the

edge formulation takes a set of demands � (represented as a matrix

matching source and destination nodes (B, 3)) and the topology

where each link (8, 9) has capacity )8 9 as input, and it outputs how

much of each demand should go over each link �B,3,8, 9 . It solves:

OptMaxFlow(#, �, �) ≜ argmax
F

Objective(F)

s.t. F ∈ FeasibleFlow(#, �, �)

where # and � denote the nodes and the edges in the topology

respectively. It adds feasibility constraints (FeasibleFlow) to ensure

the network can physically route the tra�c and not experience

congestion, these are:

(1) Capacity constraints: TE formulations model capacity con-

straints explicitly. The TE capacity constraints ensure the �ow

the TE optimizer allocates to each link does not exceed the

available capacity:
∑

(B,3 ) ∈�

�B,3,8, 9 ≤ )8 9

(2) Flow conservation constraints: These constraints appear in the

edge form of TE and ensure the network does not create tra�c

“out of thin air” but only routes tra�c:
∑

9 | ( 9,8 ) ∈�

�B,3,9,8 =
∑

9 | (8, 9 ) ∈�

�B,3,8, 9 ∀8 | 8 ≠ dest(B)

∑

9 | ( 9,8 ) ∈�

�B,3,9,8 =
∑

9 | (8, 9 ) ∈�

�B,3,8, 9 + �B,8 ∀8 | 8 = dest(B)

where �B,8 is the data node 8 demands from source B .

It may appear that elements of this formulation match the model

we laid out in Figure 1, but there are fundamental di�erences that

make this di�cult to apply directly.

Discretized sends. Demands in TE request a �xed bandwidth

(where the units are in bits per second), which the TE solution

assumes is sustained for the entire duration the operator uses the

solution. This is true because TE solutions bundle multiple �ows

between the same nodes into a single demand— statistical averaging

then ensures the demand is sustained for longer. Production systems

periodically recompute the solutionwith an updated demandmatrix

to support shifts in the demand over longer time scales but only at

course-grained regular intervals (minutes).

In collectives, on the other hand, demands ask the network to

transfer a �xed amount of data (where the units are in bits): once
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Figure 3: Relative error in the average throughput (output

bu�er size / total transmission time) of solutions that model

latency and queuing compared to solutions that do not. Re-

sults are for a proprietary topology from a public cloud with

2 chassis, 8 GPUs, and 40 edges, where the " of intra-chassis

and GPU-switch links are 0.6 and 0.75 �s, respectively.

the node sends a chunk of data, it moves on to a di�erent chunk

of data if available — capacity frees up over time. In the case of a

sender, sender nodes will eventually act as relays and no longer

send data of their own for the current instance of the collective.

In-network copies. In TE, the �ow conservation constraints en-

sure the incoming rate to a node is the same as the outgoing rate.

These constraints enable traditional TE to avoid the scenario where

more tra�c comes into a node than what goes out — otherwise, the

network will either have large bu�ers or bu�er over�ows. It also

helps to avoid wasteful solutions, where tra�c arrives at a node

but is never used.

Many collective demands (e.g., AllGather) consist of sources

that send the same data to multiple destinations (multi-cast tra�c)

and bene�t substantially from the ability to copy and send data

at intermediate nodes. Figure 2a shows a simple example of the

impact of not considering in-network copies, comparing the optimal

schedule with and without the capability.

Latency and queuing. TE problems allocate �ows to paths2. Tra-

ditional TE models can make this �uid-�ow approximation because

they model �xed (and sustained) demands and compute steady-

state performance — they do not rely on queuing and do not have

to reason about propagation delay.

But we have to model U and the role of interconnect timing in the

CCL problem because of the small transfer sizes that are common

in collectives [5, 33] (Figure 3 shows how U plays a bigger role in

such transfers). If we model delay as the end-to-end transfer time,

we introduce signi�cant errors compared to when we model the

interconnect behavior. For example, in Figure 2b, the error between

these two models is introduced because the chunks from (1 and

(2 arrive at ℎ3 at the same time, and, thus, one chunk needs to be

queued.

Support for storage and caching.Most TEmodels do not leverage

intermediate nodes’ ability to bu�er data and, in fact, usually avoid

it. This makes sense in TE; switches and routers have shallow

2This is also true of the edge-form of the problem.

Variable Description

# Set of nodes in the graph.

( Set of nodes in the graph that are switches (( ⊂ # ).

� Set of edges in the graph (� ⊆ 2# ×# ). Edges are unidirec-

tional.

� Chunk IDs (� = {0, 1, 2, . . . , C}). Each node has ≤ C + 1

number of chunks.

� Demand function (# × � × # → {0, 1}) where �B,2,3 is

whether destination 3 wants chunk with id 2 from node B .

g Epoch duration.

 The set of epochs ( = {0, 1, 2, . . . , K}).

�B,8,9,:,(2 ) Amount of source B chunks that are going over link (8, 9 ) ∈

� at epoch : ∈  .

�B,8,:,(2 ) Amount of source B chunks that are in node 8’s bu�er at

the start of epoch : .

)8 9 Capacity of link (8, 9 ) ∈ �.

U8 9 Fixed latency associated with link (8, 9 ) ∈ �.

X8 9 Number of epochs contained within an U8 9 for each link

(8, 9 ) ∈ �.

RB,3,: Source B chunks that node 3 read o� of the network in

epoch : .

RB,3,:,(2 ) Source B chunks read o� the network by 3 up to epoch : .

Table 1: Our notation. We put in parentheses the index (c)

because we only use it when demands bene�t from copy.

When we model copy, L and H are integers. We show for

some demands, we can use real variables instead in §4.1.

bu�ers compared to transfer sizes, and for stable demand, there is

little reason to delay sends.

However, most nodes in a collective topology can bu�er sizable

amounts of data before sending it out. We show that we can use

this to improve solver time as it increases the number (space) of

(equivalent) optimal solutions. For example, in Figure 2c, any of

the two nodes can begin the schedule and send their chunks to ℎ,

which creates 3 possible schedules for the �rst 1 s. With store and

forward, we can have three additional schedules where all three

sources send to ℎ in the �rst second, and we then choose in which

order to send them to the destination in the next. The solution

quality is the same in both cases (we satisfy the demand in 3 s). For

some collective demands and topologies, store-and-forward may

also improve the transfer time.

3 THE TE-CCLMODEL

Prior work assumed TE is incompatible with collective communica-

tion [33] in part because of the above di�erences. Our main insight

is that the principles TE uses to model communication continue

to be valid in CCLs, modulo a few crucial modi�cations. Drawing

an analogy to TE provides a framework for us to retain a direct

mapping of constraints between the two problems that (a) supports

a principled construction of a solution to the CCL problem and (b)

enables operators to later leverage the vast body of research on TE

and methods to scale it, e.g., PoP [25] and NCFlow [1].

To that end, in this section we show how we can model the

collective communication problem based on ideas that have their

roots in how operators solve TE problems [17, 21].
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3.1 The General Model

Our notation is in Table 1. Like TE, we need to account for capacity

and �ow conservation constraints. But before we show how we

model these behaviors, we need to introduce a few new concepts

that allow us to address the di�erences we described in §2: chunks,

epochs, and bu�ers.

Unlike TE, collective demands are �nite — we need to keep track

of where data is at each point in time. We divide the demand into

chunks to facilitate this. Chunks are contiguous blocks of bytes3.

We model time through discrete epochs and produce a schedule

that tells the user, for each epoch, which chunk to send and where

to send it. We assume that each source node has a maximum of

C + 1 chunks, where we identify each chunk globally through a

unique id (B, 2), where B is a source node and 2 is the local id of

the chunk at the node. The demand is represented by the function

� , where �B,2,3 indicates whether destination 3 wants the chunk

with id 2 from node B . This notation is akin to the multi-commodity

�ow problem, where each commodity is tracked from its source

to its destination to ensure all commodities reach their intended

destinations.

We discuss chunk sizes and epoch duration in §5. For now, we

assume g is the epoch duration and )8 9 is the capacity of a link (the

units are chunks per second), and an epoch is su�cient for at least

one chunk to traverse the fastest link.

We use bu�ers to model store-and-forward. To simplify the ex-

planation, we assume each node has enough bu�er to store the

entire network demand if it needs to (we show how to remove this

assumption in Appendix B).

We need to track each chunk to model copy: we use �B,8, 9,:,2 and

�B,8,:,2 to track whether chunk 2 from source B is going over link

(8, 9) in epoch : or is in node 8’s bu�er at the beginning of epoch :

respectively.

We also need to use integer variables — we cannot allow chunks

to be split into smaller pieces. We use the example in Figure 4 to

explain why. Source B sends the �rst half of a chunk ( ) to both

destinations 31 and 32. These nodes then both forward it to 33: they

have no way of knowing this is the same half. The optimization now

thinks it has delivered the full chunk to33 while it has only delivered

one half of it twice: it sends the second half of the chunk to both 31
and 32 but not to 33. If we use integers for �B,8, 9,:,2 and �B,8,:,2 we

can avoid this problem (we do not need this for demands that do

not bene�t from copy §4.1). We can increase the number of chunks

to decrease the size of each individual chunk and support smaller

transmission blocks (the optimization automatically consolidates

them to bigger units if needed) — but increasing the number of

chunks introduces a trade-o� because it increases the number of

variables and slows down the optimization.

We now have everything we need:

Capacity constraints. Capacity constraints ensure we do not send

more data than the link can carry in an epoch.

Capacity Constraint
(

8, 9, :
)

≜
∑

B∈#

∑

2∈�

�B,8, 9,:,2 ≤ )8 9g

3We allow our solution to split chunks into smaller blocks when we move to the linear
program form.

0.5

0.5

0.5

0.5

B

31

32

33Epoch 0 one chunk

(as two halves)

Epoch 1

Epoch 1

Epoch 2

Figure 4: We need integer variables to track each chunk. If

we allow partial chunks ( and ) and copy at the same time,

we run into a situation where the optimization can send

the same copy of part of a chunk ( ) to two neighboring

nodes (in this case d1 and d2) and they can forward it along

to the destination (d3). Since the formulation has no way

of knowing these two halves are the same, it thinks d3 has

received the full chunk.

Flow conservation constraints. TE uses �ow conservation con-

straints to ensure the network does not create tra�c out of thin

air: the sole purpose of these constraints is to ensure a non-source

node only consumes or forwards all of the tra�c it receives. But

these nodes can create tra�c in the collective case (they copy data

and forward it along multiple outgoing links) and we also have to

account for queueing and propagation delay.

To model delay, we need to ensure a node does not forward

a chunk if it has not received it. We �rst compute X8 9 =
U8 9
g , the

number of epochs a chunk needs to traverse a link. Tra�c that node

8 sends to node 9 at the beginning of epoch : arrives at node 9 by

the end of epoch : + ⌈X8 9 ⌉. Node 9 can forward a chunk it receives

from node 8 if node 8 sent it ⌈X8 9 ⌉ epochs ago.

In-network copies, by de�nition, violate traditional �ow conser-

vation constraints. At the same time, the node does not need to

copy the chunk on the same link in the same epoch. We use this,

along with X8 9 , to rewrite the �ow conservation constraints as:

Flow conservation constraints
(

B, =, :, 2
)

≜

�B,=,:,2 +
∑

∀ 9 | ( 9,=) ∈�

�B,9,=,:−⌈X 9= ⌉,2 ≥ max
∀ 9 | (=,9 ) ∈�

�B,=,9,:+1,2

This constraint encodes that what the node = has in its bu�er along

with what it receives in epoch : has to be larger than what it sends

out in the next epoch on each of its outgoing links. We track the

bu�er contents as follows:

Bu�er constraints
(

B, =, :, 2) ≜

�B,=,:,2 = �B,=,:−1,2 +
∑

∀ 9 | ( 9,=) ∈�

�B,9,=,:−⌈X 9= ⌉−1,2

The bu�ers accumulate all tra�c the GPU has received up to

that point. Nodes have enough memory for this — for collective

demands such as AllGather, each GPU needs all the chunks that

are sent over the network and stores them anyway. Moreover, it

is straightforward to model limited bu�ers if we track what we

should remove from the bu�er in each epoch (see Appendix B). We

evaluate the bene�t of bu�ers using an AllGather demand in §6.
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The �rst and last epoch’s �ow conservation constraints are

slightly di�erent from the above as a node does not receive any-

thing in the �rst epoch and does not send anything in the last. We

refer the reader to the Appendix A for details.

Destination constraints.We next need to account for demands

to make sure that all demands are met at the end of execution. The

constraints are as follows:

Destination constraints
(

B, 3, :, 2
)

≜

RB,3,:,2 = min(�B,3,2 , �B,3,:+1,2 ) &

RB,3,K,2 = �B,3,2

where RB,3,:,2 is whether 3 has received chunk 2 of source B by

epoch : . These destination constraints are di�erent from their

counterparts in traditional TE models. This is because of copy:

3 may want a chunk and also relay the chunk to others. Hence, we

cannot assume 3 wants to consume everything in its bu�ers. This

is why we take the minimum of �B,3,2 and �B,3,:+1,2 . We ensure 3

eventually receives its full demand by the last epoch K by setting

RB,3,K,2 to �B,3,2 .

Modeling switches. So far, we have only modeled the behav-

ior of GPU nodes. While some topologies (e.g., within a single

DGX1 node [5]) only consist of GPUs, almost all larger topologies

use switches to connect GPU blocks. We have to model network

switches di�erently because they have limited memory and cannot

bu�er chunks for appreciable durations. Hence, we set the bu�er

at each switch to zero.

Tra�c pays the U delay cost of two links to cross a switch: one

from the node to the switch and one from the switch to the node4.

Most of today’s switches support copy through SHARP [10], and

so we model switches with this assumption (switches have the same

�ow conservation constraint as other nodes). Note that we can also

model switches without this capability to support legacy hardware.

One way is to use traditional TE �ow conservation constraints

for the switch (what comes into the switch must go out). Another

option is to use the approach from TACCL [33]: replace switches

with hyper-edges and allow the user to choose which hyper-edges to

allow. For this second model, we need to add additional constraints.

Due to limited space, we refer the reader to Appendix C for details.

The former two approaches are easier to use in practice: the user

does not need to specify a sketch (which is crucial to TACCL) or

pick which GPU communicates with which other GPU — when

we looked at the TACCL code we found the authors used their

uc-min and uc-max strategy along with the user-speci�ed sketch

to automatically �nd which links to enable for switches within

the node, but for cross-node links they pre-identi�ed which links

perform best manually. We need to understand the topologies well

to write such sketches and we found it di�cult when we evaluated

new topologies with TACCL. Our solution requires no human in

the loop — the user only needs to specify the topology and the

demand matrix — but the solver is slightly slower.

4Prior work models this behavior incorrectly — they remove the switch and replace it
with a direct link but set the U and V based on the uplink only [33].

The objective. Our optimization objective is to �nish the transfer

as quickly as possible. We can encode this as follows:

Objective function ≜
∑

∀:∈ ,∀B,3∈# :B≠3

1

: + 1
RB,3,:

The objective gives fewer rewards as : increases: the objective

improves if the schedule satis�es the demand as soon as possible.

We now have a complete optimization model.

One nuance here is that the optimization has multiple optima:

the objective does not discourage solutions where we send �ows

that do not satisfy any demand (as long as the schedule satis�es

all demands as quickly as possible, the solution is optimal). Such

solutions are clearly wasteful.

To avoid such silly cases, we can do one of two things: (a) we can

either add a term to the objective to discourage unnecessary �ows,

or (b) we can zero out those �ows in post-processing the solutions.

The �rst results in higher solver run times as it becomes harder for

the solver to prove optimality.

We use the latter approach, where we run an algorithm similar

to a reverse DFS. We start from each destination and track the �ows

from that destination to the source until we account for its entire

demand. We then remove (zero-out) all remaining �ows as there

is no demand corresponding to them. This takes O(|+ | + |� |) time,

where + are the vertices and � are the edges of the graph.

4 SCALING

Our model is general and pushes beyond the scale where operators

use CCLs today [5, 33]. Extrapolating further, we acknowledge

that quickly expanding training cluster topologies may render even

the above solutions impractical in the future. We next show two

methods to scale TE-CCL.

The �rst works in situations where in-network copies are not

needed (e.g., AllToAll) and preserves optimality. Such collectives

only require us to account for the U delay cost but otherwise match

the traditional TE formulation. The second is general (i.e., supports

copy): it solves the problem by partitioning it in time (its goal, in

each time partition, is to make as much progress as it can towards

�nishing the transfer). This later model is sub-optimal, but we

empirically show it performs well (see §6) as it more accurately

captures the optimization incentives and constraints. Its formula-

tion allows users to trade o� optimality and speed by changing the

number of partitions (smaller partitions increase sub-optimality

but improve scalability).

4.1 Scaling by Converting to an LP

MILPs are time-consuming, non-convex problems, but there is only

one reason we needed integer variables for our model: support for

in-network copies. In cases where demands do not bene�t from copy

(i.e., when each destination wants a unique segment of information

from each source), we can change our formulation into a linear

program (LP). LPs are convex optimization programs that we can

solve in polynomial time and scale better than MILPs.

We remove support for copy and modify the �ow conservation

constraints back to their traditional form. The following constraint

dictates that a node either bu�ers a chunk it received, forwards it

in the next epoch, or consumes it. Notice a node can consume a
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chunk it received at the end of an epoch. We do not track individual

chunks since we no longer need to track duplicates. This reduces

the number of variables.

Flow conservation constraints
(

B, =, :
)

≜
∑

{ 9 | ( 9,=) ∈�}

�B,9,=,:−⌈X 9= ⌉ + �B,=,: =

�B,=,:+1 + RB,=,: +
∑

{ 9 | (=,9 ) ∈�}

�B,=,9,:+1

The constraints for switches are di�erent: a switch does not con-

sume chunks or bu�er them, so we remove those terms.

Since destinations no longer need to both consume and forward

chunks, we can modify the destination constraints:

Destination constraint
(

B, 3, :
)

≜

RB,3,: =

:
∑

A=0

RB,3,A &

RB,3,K =

∑

∀2

�B,3,2

Our LP produces a rate allocation to demands that originate from

each source on each link. From this, we generate a schedule (we

translate these rates to paths for each chunk through the same

DFS-like solution in §3). This is a straightforward algorithm, and

we omit it due to space constraints.

4.2 Scaling Using the G∗ Technique

The LP form allows us to scale the solution to large topologies,

but it does not permit copy. Copy is important for demands such

as AllGather (see §2). We also provide a second scaling method

inspired by �∗ [12].

We partition the problem into multiple rounds. In each round,

we no longer �nd a solution that satis�es all demands but instead

motivate the solver to make as much progress towards this goal as

it can. These optimizations have fewer variables and are faster. We

sequentially solve them one after the other until we reach a round

where we meet all demands. This solution is similar to the SPFF

schedule in [37] but results in better performance because each

optimization covers (“sees”) more of the problem and can use more

paths. Here, we need to address two new modeling challenges:

Encoding the right incentives.We need to remove the constraint

that required the optimization to meet all demands by the last

epoch. Otherwise, the optimization in each round may become

infeasible. This means our objective function is no longer su�cient:

it only says if it is feasible to satisfy a demand, then do so as fast

as possible.

We augment our topology with logical links that allow us to

compute this reward function. More speci�cally, we add logical

edges to the graph that connect each node to all the destinations

and add weights to each of these logical edges that correspond

to the minimum distance — we compute these weights using the

Floyd-Warshall algorithm [14] and the U-delay cost of each edge —

from the node to each destination. We can now use these edges to

encode a viable cost function, which we can add to our original

objective. We refer the reader to the Appendix D for the details.

Modeling delay. Chunks that we send on any link (8, 9) may not

reach 9 by the end of the round (because of the U8 9 -delay on that

link) but instead arrive in a future round. We, therefore, need to

maintain state from one round to the next and incorporate these late

arrivals in our formulation. The full formulation is in Appendix D.

5 IMPORTANT CONSIDERATIONS

We described how we formulate the CCL problem in TE-CCL. All

three formulations (the general MILP form, the LP form, and �∗

model) �nd solutions for any input demand, but only the general

MILP form and the �∗ model support copy. There are a number of

parameters in these formulations we need to choose carefully.

Epoch durations and chunk sizes. A side-e�ect of using integer

variables in the MILP formulation and the �∗-based technique is

that the choice of chunk size and epoch duration is important (the

LP is not sensitive to these settings) — smaller epochs allow for

�ner-grained schedules that better leverage the network capacity.

To �nd the best chunk size, we can sweep a range of values to �nd

the best one quickly, take it as an input, or users can also utilize

solutions like [22] to pick the optimum for their work�ow.

To set the epoch duration, we can do one of two things: (a) to

get the best schedule from the vanilla MILP formulation, we can set

the epoch duration to the time it takes the slowest link to transmit

a chunk (the MILP cannot send anything if we use smaller epochs

because of the capacity constraints); or (b) we can set the epoch

duration based on the time it takes the fastest link to transmit

a chunk. Option (b) enables the MILP to produce �ner-grained

schedules but to use it, we have to modify the capacity constraints

and the �ow conservation constraints. Due to space constraints, we

refer the reader to Appendix F for the details. We compare the two

approaches in §6. Option (b) produces better schedules, which is

why we use it for most of our evaluations.

Number of epochs. We need to input an upper bound on the

number of epochs, which estimates how many epochs it may take

to fully satisfy the demand: pick too small a number, and the op-

timization will be infeasible; pick too large of a number, and the

MILP will be too large and too slow. To streamline �nding the right

number of epochs — and to not burden the user with having to

identify what numbers to use — we develop a simple algorithm that

�nds a loose upper bound on how long we need to satisfy all the

demands.

We use a feature in optimization solvers (e.g., Gurobi [30]) where

they can quickly return some feasible solution. Most solvers quickly

�nd a feasible solution that is also optimal and spend the majority

of their time proving optimality [24] (in our experiments, the solver

usually found a good solution in the �rst hour and did not improve

it even when we ran for 10 hours). We use binary search with this

feature to �nd the minimum number of epochs we need. We can

also use this method to scale TE-CCL further if needed.

Number of epochs in a round in G∗.We solve round after round

of�∗ until we deliver all the demands. Users can choose how many

epochs to use in each round. The smaller the number of epochs in

a round, the faster the optimization and the higher the optimality

gap. Picking a small number of epochs per round also impacts the

state we need to maintain. In our experiments, we set the number
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of epochs such that chunks do not arrive later than one round in

the future.

The topology, " , and # inputs. TE-CCL takes the topology and

the values for U and V as input. We do not provide an independent

method for computing these values.

Which switch model to use. We provide two switch models: one

that allows the switch to copy chunks (to model networks with the

SHARP protocol [10] enabled) and one that does not (the latter is

similar to TACCL’s hyper-edge model). It is up to the user to decide

which is more appropriate for their infrastructure.

Modeling variable bandwidth. Our model supports networks

with variable bandwidth. To add support for this, we assume min-

imal �uctuation within an epoch and change bandwidth only be-

tween epochs. We can then take the capacity matrix for each epoch

and use that in our capacity constraints.

Use in multi-tenant clusters. TE-CCL ’s formulation supports

multi-tenancy: all our models accept a network demand as input —

to model a multi-tenant environment, we have to change the de-

mand matrix to the sum of the demands across all collectives. The

capacity constraints will ensure we do not exceed network capacity

and the objective ensures we minimize the total completion time

across all tenants.

The formulation can be further updated to support priorities

across tenants (i.e., prioritizing one tenant’s completion time over

the others) if we add a separate bu�er and read variable for each

tenant. We can then add the priorities to the objective function.

This change increases the number of variables in the MILP. For

e�ciency, we may have to use �∗ in this case, but doing so would

not impact the quality of the solution compared to when we solve

a single tenant problem at the same scale.

The above formulation assumes that the schedule can be ex-

ecuted on hardware in a way that continues to fully utilize the

bandwidth of a link when necessary. An e�cient hardware imple-

mentation of a multi-tenant schedule likely introduces additional

technical challenges, but we leave these for future work.

Handling stragglers. We note that our formulation also includes

coarse-grained mechanisms that help account for stragglers. For

instance, we can manage the latency variations that lead to strag-

glers using the U − V cost model. By increasing U , we can address

latency variations that are not proportional to the chunk size, such

as when computation lags and fails to produce a chunk in time

for transmission. Similarly, we can adjust V to re�ect latency vari-

ations proportional to the data transfer size, such as bandwidth

�uctuations due to congestion control behaviors. It is important

to note that the V cost applies to each transfer, while U impacts

the end-to-end completion time, particularly when disruptions in

pipelining occur, causing a link to become idle between transfers.

6 EVALUATION

We implement our solution in Python5. We use Gurobi [30] to solve

the optimizations. We convert our solution into MSCCL [5], which

can then port it into a schedule that runs on the hardware.

5Link to code: https://github.com/microsoft/TE-CCL

Topology # of GPUs per chassis # of edges per chassis

Internal 1 4 8

Internal 2 2 2

DGX1 8 32

NDv2 8 32

DGX2 17 32

AMD 16 56

Table 2: Our topologies. The internal topologies are from a

large public cloud and are proprietary: " is 0.6-s and 0.75-s

on their GPU to GPU and GPU to switch links.

The goal of this evaluation is to (1) compare TE-CCL to state-

of-the-art, both in scale and in terms of solution quality; (2) show

TE-CCL scales to the large topologies; and (3) show the impact of

each of our di�erent design choices.

Metrics. We use the following metrics to evaluate TE-CCL:

• Solver time: This includes the time to set up the variables and

constraints in the solver.

• Transfer time: The time it takes for the transfer to complete: for

all the nodes to receive their full demand.

• Output bu�er size: The data each GPU receives once we satisfy

the demand (we borrow this from TACCL [33]).

• Transfer size: The amount of data each GPU sends to others: for

example, a GPU in an AllGather demand with a transfer size

of 1 GB sends 1 GB of data to each other GPU.

• Algorithm bandwidth: The output bu�er size divided by the

transfer time, a metric from NCCL [26].

Topologies andworkloads.We evaluate TE-CCL using the topolo-

gies in Table 2. We use common topologies such as DGX1, DGX2 [28],

NDv2 [3], and AMD [2], as well as two next-generation (not in pro-

duction yet) proprietary topologies from a public cloud provider.

We evaluate with a range of data sizes and use pro�led values for U

and V , similar to TACCL [33]. Collective communication operations

follow the standard sizes and groupings de�ned in NCCL [16].

TE-CCL variants.We use three variants of TE-CCL in our eval-

uations: the optimal (where we use the vanilla MILP forAllGather

and LP forAllToAll), the early-stop version forAllGather (where

we use Gurobi’s ability to �nd a good solution — which is at most

30% away from optimal — quickly), and �∗ for AllGather.

We set the epoch duration based on the bandwidth of the fastest

link. In the cases where U > 200 × g , we increase the epoch dura-

tion by 5× to avoid large models (since U dominates, this does not

materially impact the solution).

TE-CCL solves optimization problems to produce a schedule.

The optimization is deterministic and outputs the same solution

every time we run it. The solver times also do not vary signi�cantly

for a given optimization across runs.

Baselines.We compare our solution to two state-of-the-art solu-

tions: TACCL [33] and MSCCL6 [5].

6SCCL was renamed to MSCCL.

https://github.com/microsoft/TE-CCL
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Collective, #chunks MSCCL (-s) TE-CCL (-s) Pipelining

Possible

AllGather, 1 3.4 4 ✗

AllGather, 2 5.1 5 ✓

AllGather, 3 8 6.1 ✓

AllToAll, 1 3.4 4 ✗

Table 3: Comparing the transfer time from MSCCL

least-steps with TE-CCL (K = 10 and chunk size = 25 KB).

TE-CCL can better pipeline chunks and so pays less " cost

with larger transfers.

Topology Collective # GPUs EM Solver time

Internal 1 AG (A*) 64 1 3000 B

Internal 1 AG (A*) 128 1 7 ℎ

Internal 2 AG (A*) 128 1 1300 B

Internal 2 AG (A*) 256 2 2.8 ℎ

Internal 1 AtoA 16 1 66 B

Internal 1 AtoA 32 1 215 B

Internal 1 AtoA 64 1 500 B

Internal 1 AtoA 128 2 800 B

Internal 2 AtoA 128 1 2600 B

Internal 2 AtoA 256 4 1500 B

Table 4: Large topologies for which TACCL cannot synthesize

the schedule. The solver time is the average TE-CCL time

to synthesize the schedule, and EM is the epoch multiplier

factor to change the epoch duration relative to the �nest

granularity.

TACCL. We obtained the TACCL code from their public GitHub

repository [34] and report the solver time. TE-CCL takes an addi-

tional V compared to TACCL to route chunks through a switch:

TACCL replaces the switch with direct edges between the nodes

and only pays one transmission delay to cross that link, whereas

TE-CCL models the switch itself and pays two transmission de-

lays — one from the node to the switch and one from the switch to

the node. To compare fairly against TACCL, we change our model

of the switch to do the same when comparing with TACCL.

MSCCL.We compare to MSCCL using the public MSCCL code-

base [23] and also re-ran our experiments using the MSCCL artifact

from their submission (which the authors gave us). We veri�ed and

con�rmed with the authors that we used MSCCL correctly and that

our numbers are correct.

Platform.We use the solvers and the schedules they produce to

compute the transfer times and algorithm bandwidth for MSCCL,

TACCL, and TE-CCL. We checked using AMD nodes that these

estimates match what we get from running on hardware for both

TE-CCL and TACCL. Most of the results we report in the paper

are based on this approach (i.e., we use the schedule the solver

produces, the transfer times, and algorithm bandwidth to compute

the total time it takes for the schedule to �nish). We also report

results on a small AMD test-bed that shows these results hold on

real hardware.

We report the capacity and delay for the public topologies in the

Appendix H.

6.1 Comparison to MSCCL and TACCL

MSCCL. MSCCL has two modes: one minimizes latency

(least-steps) and one produces an instance solution (instance)

with the number of chunks, rounds, and steps as input. Our so-

lution is equivalent to the former, but the MSCCL least-steps

command took over a day to produce a solution for AllGather

demands with more than 3 chunks and AllToAll demands with

more than 1 chunk on a DGX1 topology (the MSCCL paper does

not evaluate this mode). We ran TE-CCL with max = K = 10 (the

maximum number of epochs the optimization can use to satisfy

the demand) and 25 � chunks, and it �nished in ≤ 0.65B for all

AllGather demands and ≤ 0.97B for AllToAll with less than 5

chunks.

We used 25 � chunks to capture the impact of U (U = 0.7`s)

on the solutions (Table 3): for all > 1 chunk cases TE-CCL outper-

forms. This is because our TE-based formulation models pipelining

explicitly and ensures a node receives a chunk before forwarding

it; MSCCL enforces a barrier instead. MSCCL performs better in

the 1 chunk case as TE-CCL cannot leverage its ability to pipeline.

We also compare with MSCCL’s instance solution (due to space

constraints, we show the results in the Appendix G). To create

an apples-to-apples comparison, we use the number of rounds in

MSCCL for K in TE-CCL — since MSCCL is no longer running

an optimization — and use U = 0 (this is necessary as our model

will need more epochs otherwise to account for U). We use the

scenarios from Table 4 in MSCCL [5] and run both solvers on a

desktop with 6 cores and 32 GB RAM. MSCCL failed to produce a

solution for AllGather workloads with more than 1 chunk even

after 3 days. TE-CCL runs faster thanMSCCL in almost all cases and

even improves MSCCL’s solution quality by 33% in the AllToAll

scenario. TE-CCL is slower than MSCCL in one instance (6, 7): this

is because in TE-CCL we solve for the optimal number of epochs,

and we use a value for K that is too tight — we can reduce the solver

time to 11 seconds by increasing K to 20 (the quality of the solution

does not change).

To fully highlight our runtime advantage over MSCCL, we ran

an AllToAll demand with 8 chunks using both solvers: MSCCL

timed out after 10032.7s and did not produce a schedule, whereas

ours �nished in 1.88s with a valid schedule that �nished the transfer

in 21`s (for 25KB chunks).

TACCL. We compare the solver time and algorithm bandwidth of

TE-CCL and TACCL using AllGather and AllToAll demands

and on DGX2 and NDv2 based topologies with up to 34 nodes (a 2-

chassisDGX2 topology has 34 nodes) and on both internal topologies

with up to 128 nodes. We ran all experiments on a Linux Ubuntu

20.04 VM with two Intel Xeon(R) Platinum 8380 CPUs with a total

of 80-cores/160-threads and 512 GB RAM and used Gurobi 9.5.2

version as our solver. TACCL AllToAll does not terminate for

large topologies (including the 2 chassis DGX2 AllToAll) — we use

a timeout of 2 + 2 hrs or 4 + 4 hrs for their routing and scheduling

phases depending on the topology size.

TACCL ran out of memory and did not produce a solution for

large Internal 2 topologies (with over 64 chassis) and for almost

all Internal 1 topologies (with over 4 chassis). Table 4 reports the

numbers for TE-CCL on ≥ 64 nodes topologies.
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Figure 5: Compares the algorithm bandwidth of TE-CCL and TACCL (
100(ZKIIR−ZGIIR)

ZGIIR
). We mark the scenarios where

TACCL is infeasible — which cause dips in the graph — using an X. AG stands for AllGather, AtoA AllToAll, and ES early

stop. The X-axis is the output bu�er size starting with 1GB and ending in 1KB.
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Figure 6: Compares the solver time of TE-CCL and TACCL (
100(ZGIIR−ZKIIR)

ZGIIR
). Ch stands for chassis. We use log scale for the

y-axis to improve resolution. TE-CCL is faster than TACCL on 45% of AllToAll scenarios and 40% of AllGather scenarios

(with early stop) on the NDv2 topology; 72% and 27% for DGX2; 72% and 83% for Internal 1; and 50% of AllGather for Internal

2. We observe that TE-CCL solver-time is on par with TACCL, but in general, we expect TACCL to be faster because it is a

heuristic and gives up on quality for speed (in scenarios where we do not plot a line TE-CCL is slower than TACCL).
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Figure 7: We compare TACCL and TE-CCL for AllToAll

demands on the Internal 2 topology. TE-CCL produces equiv-

alent or higher quality solutions in all cases with similar

solver times.

TACCL scales better on the NDv2 topology compared to internal

topologies 1 and 2. In NDv2, only 2 nodes in a chassis connect to a

switch, but in internal topologies 1 and 2, many nodes in a chassis

are connected to a switch — TACCL replaces the switch with direct

edges; as we increase the size of internal topologies 1 and 2 the

number of such edges increases exponentially. The TACCL authors

recommended we use a sketch that only uses a subset of these edges.

Doing so improved the runtime for smaller topologies, but TACCL

still failed to produce a solution after 8 hours for larger ones.

TE-CCL often produces higher quality solutions compared to

TACCL (in some cases TACCL fails to produce a schedule and times

out — we show those cases with an X): on DGX2 the improvement

is at least 12% and 9% (maximum 471% and 2979%) for AllGather

and AllToAll respectively; on NDv2 0.36% and 0.18% (maximum

970% and 2919%); on Internal 1 −5% and 20% (maximum 689% and

197%), and on Internal 2, 0.33% and 0.48% (maximum 5759% and

12322%). We show these results in Figure 5 and Figure 7 (we report

AllToAll numbers for Internal 2 separately for clarity). We report

the raw algorithm bandwidths for TE-CCL variants in the appendix

(see Table 8) for NDv2 2 chassis as a sample.

We use Gurobi’s early-stop for AllGather demands to improve

TE-CCL’s ability to scale: this does not materially impact the quality

of TE-CCL’s solution — even with an aggressive optimality gap

threshold of 30% — but allows TE-CCL to solve the problem faster

in the AllGather scenario (we found TACCL also uses this under

the hood — our solver time matches TACCL even when TACCL

uses this feature). TACCL uses this early stop mechanism in the

AllToAll case as well, but we run TE-CCL to completion: TE-CCL

always produces schedules that match or beat those of TACCL,

and in many cases, it produces these schedules more quickly. We

compare the two solver times in Figure 6.

6.2 AllGather on AMD

We evaluate TE-CCL on a two chassis (32 GPU) AMD topology.

TE-CCL outperforms RCCL’s ring-based algorithm and TACCL

(Figure 8) for most transfer sizes: its solutions are 3× faster than

RCCL for 1MB transfers and 1.5-2× faster for larger transfers. Our
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Figure 8: AllGather comparisons of RCCL, TACCL, and

TE-CCL on two AMD nodes.

Figure 9: The bene�t of copy. For large transfers, a copy helps

�nish the transfer faster.

results are based on ROCm6 [32]. We found TE-CCL outperformed

RCCL on ROCm5.7 by a larger margin for small transfers, but RCCL

improved their manually constructed schedules for small transfers

in their recent update and reduced the gap.

6.3 Scale

TACCL often crashes on large topologies, either due to requiring

more than 400 GB RAM or memory leaks and segmentation faults.

TE-CCL also requires a lot of memory in some cases (around 350

GB for AllToAll on large topologies), but we can control this by

changing the epoch duration to trade o� the quality of the solution

with the solver memory. Table 4 summarizes our results on large

topologies and reports the scale factor (EM). We use output bu�er

sizes larger than 16 MB — as the number of GPUs increases, chunks

become too small beyond this point. We adjust the epoch size by a

factor of, at most, 4 for these cases to limit memory usage.

6.4 Microbenchmarks

We next evaluate our design choices:

Copy. As shown in Figure 9, in-network copy is most helpful for

large transfers where there is not enough capacity to transfer mul-

tiple copies directly from the source to each destination: we see in

the largest transfer size (0.21 GB) copy reduces the transfer time

by 50% for DGX1, the Internal 1 with U = 0 and U > 0, and 12.5% for

Internal 2. In-network copy does not help with small transfers as

there is enough capacity between the source and the destinations

to send multiple copies of the data directly from the source. We use

4 chunks to complete these transfers.
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Figure 10: We compare the impact of small vs large epochs on

the solver speed (a) and solution quality (b). We use 2 chassis

for all topologies. Both graphs compute
100(small−large)

large
. The

solver �nds a solution faster with large epochs but produces

better quality solutions with small ones.

Small vs large epochs (Figure 10 where we use 2 chassis for

each topology). In AllGather we only allow chunks to traverse

one link in a single epoch: the length of the longest path dominates

the transfer time when we use large epochs because the length

of the epoch is too large compared to how long it takes for the

chunk actually to traverse the link (on faster links). We see this

more predominantly in the NDv2 and DGX2 topology where the fast

links have 4× higher bandwidth (large epoch duration is, therefore,

4× small epoch duration) compared to slower ones. In contrast, we

do not see a di�erence on Internal 1, where the links are mostly

homogeneous.

Store and forward. We �nd a somewhat surprising result: bu�ers

do not impact the solution quality but only the solver time (Fig-

ure 11)! This is because of the nature of collective demands such

as AllGather and AllToAll. Because each node needs the same

amount of tra�c as it has to forward, it can interleave consuming

tra�c with forwarding it to compensate for the lack of bu�ers. But

in the presence of bu�ers, the feasible space of solutions is larger,

which in many cases enables the solver to �nd the optimal solution

more quickly (the improvement is 71% and 61% for Internal 1 and

DGX1 respectively). We believe it is possible to formally prove this

result but defer this proof to future work.

G∗ vs OPT.When U = 0, �∗ �nished in 86.61s (263.29s for 2 chunk

demands) whereas the optimal took 346s (4392s for two chunks).

The optimal was 10% better than �∗ (6% in the 2 chunk case) —

transfer times were 3.48s vs 3.89s. The results are similar when

U > 0:�∗ �nished in 137.02s (901.25s for the 2 chunk case) whereas

the optimal took 363.40s (3047s). The optimal was 20% better (8%

in the 2 chunk case).

7 RELATED WORK

TE-CCL provides a scalable method for collective communication

optimization by using a network �ow-based approach. Our solution

supports unsustained demands, store-and-forward, and copy. Our

work builds on prior work both in network tra�c engineering and

in collective optimization:

Multi-cast TE. Prior works have looked at tra�c engineering for

multi-cast networks [11, 27]. Oliveira and Pardalos [29] provide a
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Figure 11: We evaluate the impact of bu�ers on (a) solver time

and (b) solution quality. We use 2 chassis for all topologies.

Both graphs compute
100(without bu�ers−with bu�ers)

without bu�ers
. Bu�ers

do not impact the solution quality but only the solver times.

The average improvements in solver time are: 61%, −28.46%,

0.23%, 71% for Internal 1 without " , Internal 1 with " , Internal

2, and DGX1 respectively.

comprehensive summary of these works. Blink [35] used these tech-

niques to optimize collective communication but does not model

delay and store-and-forward.

WAN TE.Many prior works in networking use the network �ow

model to scalably route tra�c in wide area networks [1, 13, 15, 25].

Most of these works assume sustained demands. Among these

works, Calendaring [17] provides a solution that models unsus-

tained demands. NetStitcher [21] adds to this the support for store

and forward but assumes �ows do not compete for bandwidth. Nei-

ther of these works simultaneously model copy, store-and-forward,

and delay.

Prior work on collective communication optimization. Many

prior work have tackled the collective communication optimization

problem [5, 18, 31, 33, 35, 37]. We �nd these solutions do not scale

to the topologies and data sizes we have in production today and

those we anticipate for the future. TACCL is the most scalable of

these solutions, but it has trouble scaling when it sends more than

1-2 chunks, and is sub-optimal. Work such as [22, 36, 37] aims to

co-optimize either topologies and parallelization strategies ([36]) or

collective scheduling and execution planning [22]. These works rely

on collective communication optimizers as part of their search but

do not provide optimal solutions to the problem themselves — they

can use TE-CCL as part of their search. Our work is complementary

to these works.

8 LIMITATIONS AND FUTUREWORK

Handling failures. In our setting, we employ a Clos-based topol-

ogy with Equal Cost Multipath (ECMP) path redundancy. This

allows the network to naturally adapt to failures of inter-chassis

links and switches. We simplify this in our model by replacing the

detailed topology with a single big-switch abstraction, ignoring the

internal topology of the Clos. Handling failures within the chassis

is more challenging. Fortunately, these are less common. We defer

robust handing of such failures to future work.

Extension to public clouds. Our solution is designed to enable

operators who have full control over their training clusters and

are knowledgeable about the training workloads to optimize their

infrastructure. There are several challenges that arise when at-

tempting to export our schedule to scenarios where the tenant

does not control the infrastructure, such as cloud customers. In

such multi-tenant environments, the user may not be aware of the

topology or the U and V values of each link. Prior work [5, 33, 37]

proposes pro�lers to capture these values. Although our solution

can produce a schedule based on the numbers generated by these

pro�lers, aligning with the same abstractions as these prior works,

we anticipate that the true values of U and V will be unstable in a

shared network, thereby preventing these works from producing a

good schedule. We defer extending our solution to such scenarios

to future work.

AllReduce implementation. TE-CCL supports AllReduce im-

plicitly through the combination of AllToAll and AllGather

operations. We can also directly solve for the AllReduce workload

by utilizing multiple demand matrices, each representing an inter-

mediate stage of the operation. However, we acknowledge that our

model does not account for the compute cost in this case, and we

plan to address this in future work.

Lowering to hardware. In TE-CCL, we match the chunk abstrac-

tion and the cost-model (U-V) from prior work and rely on their

observations to ensure the schedule we produce can run on hard-

ware. We do not account for any additional hardware constraints,

such as the number of channels or the number of thread blocks

required to run these schedules on hardware. MSCCLang [7] covers

many of the nuances involved in deploying such custom schedules

on hardware. In our hardware experiments, we hand-optimized

the implementation of the TE-CCL schedule (through the XML we

provided to MSCCL) and ran it with the same number of channels

as the schedules in RCCL and TACCL to produce fair comparisons.

9 CONCLUSION

We presented TE-CCL, a scalable collective communication opti-

mizer that models the problem through a TE-based approach. We

provide three algorithms to solve this problem: the MILP approach,

which optimally solves the general collective communication op-

timization problem and supports multi-cast; the LP form, which

is also optimal and much more scalable but removes support for

multi-cast; and �nally, the �∗-based approximation method which

is much more scalable than the MILP technique and continues to

support multi-cast but is no longer optimal. We show our solution

outperforms prior, state-of-the-art techniques such as MSCCL and

TACCL by over 2×.
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APPENDIX

Appendices are supporting material that has not been peer-

reviewed.

A INITIALIZATION AND TERMINATION
CONSTRAINTS

We introduced the main constraints for the MILP and LP formula-

tions in §3 and §4.1. But we need to add a few additional constraints

to initialize and terminate them.

The �rst epoch. We use bu�ers to indicate when the node has

a speci�c chunk. In the �rst epoch of the MILP we initialize the

source bu�ers as follows:

�=,=,0,2 = max
3∈#

�=,3,2 ∀= ∈ #,∀2 ∈ �

�B,=,0,2 = 0 ∀B, = ∈ # : B ≠ =,∀2 ∈ �

We no longer need to bu�er chunks we have already sent out in

the LP form and therefore these equations become:

�B,=,0 +
∑

∀ 9 :(=,9 ) ∈�

�B,=,9,0 =
∑

∀2∈�,∀3∈#

�B,3,2 ∀B, = ∈ # : B, = ∉ (

The last epoch. In the LP we do not need to bu�er chunks if they

are not going to be forwarded. Nodes also don’t need to send out

any tra�c after this epoch. Therefore, in the last epoch of the LP

we have:

∀B, = ∈ # : B ≠ =, = ∉ (
∑

∀ 9 :( 9,=) ∈�

�
B,9,=,(K−⌈

U9,=
g ⌉ )

= RB,=,K

B MODELING LIMITED BUFFERS

In the MILP. To model limited bu�ers in the MILP we need to

change the bu�er constraints to track which chunks to remove from

the bu�er and in which epoch. Hence, we introduce a new variable

-B,=,:,2 which encodes whether we should remove chunk 2 from

node B from the bu�er at node = in epoch : . The bu�er constraints

become:

Bu�er constraints
(

B, =, :, 2) ≜

�B,=,:,2 = �B,=,:−1,2 − -B,=,:−1,2 +
∑

∀ 9 | ( 9,=) ∈�

�B,9,=,:−⌈X 9= ⌉−1,2 .

To enforce the limit on the bu�er size, we add the constraint:

∑

B,2

�B,=,:,2 ≤ L ∀= ∈ #,∀: ∈  ,

whereL is the limit on the bu�er size. We impose no limit on the

auxiliary variable-B,=,:−1,2 as the algorithm can choose to re-bu�er

a chunk at a node at any point in time and again remove it later.

In the LP. The LP removes from the bu�er what it sends out on a

link. Hence to use limited bu�ers we only have to impose an upper

bound on the sum of the bu�er variables at a node:

∑

B

�B,=,: ≤ L ∀= ∈ #,∀: ∈  

C MODELING LEGACY SWITCHES

For switches that don’t support copy, we use an approach similar

to TACCL’s hyper-edges. We remove the switch from the topology

and replace it with direct links between all pairs of GPUs that were

connected through the switch. We now need to account for the

capacity to and from the switch: this translates to a upper bound

on the number of hyper-edges we can use simultaneously in each

epoch.

We augment our notation with the variables in Table 5. We need

to add a constraint to the problem that enforces we can only use a

subset of the hyper-edges: the minimum of the number of edges

that come into the switch and go out of it. This constraint is as

follows:

∑

∀=∈#,∀2∈�,∀(8,9 ) ∈Ω (B )

�=,8,9,:,2 ≤ min( | { (B, G ) ∈ �} |, | { (~, B ) ∈ �} | )

∀: ∈  , ∀B ∈ (

Each node 8 can only send (receive) tra�c on one of its outgoing

(incoming) hyper-edges:

∀: ∈  ,∀8 ∈ #,∀B ∈ (
∑

∀=∈#,∀2∈�,∀(8, 9 ) ∈Ω (B )

�=,8, 9,:,2 ≤ 1

∀: ∈  ,∀8 ∈ #,∀B ∈ (
∑

∀=∈#,∀2∈�,∀( 9,8 ) ∈Ω (B )

�=,9,8,:,2 ≤ 1.

We only need to use this model in the general MILP form to

ensure the solution can scale—the LP model already assumes none

of the nodes copy tra�c.

0 1 2 · · · K 0 · · · max ′

0 · · · · · · K 0 · · · max ′

Round A

Round A + 1

Epochs in a round Future epochs for a round

Figure 12: G∗ time progression between rounds

D THE �∗ TECHNIQUE

In the �∗ based approach, we split the problem into multiple time

partitions (or rounds). Our goal in each round is to get the chunks

closer to the destination. We solve each of these rounds sequentially

until we satisfy all the demands.

The delay on each link (i.e., U8 9 ) means some chunks we send on

link (8, 9) in a particular round may arrive at node 9 in a subsequent

round. We use the set  ′ to denote all subsequent rounds and

&B,2,8,: ′,A to denote the chunks that arrive in these rounds to account

for this (Figure 12). To keep things simple, we choose to set the

number of epochs in a round in a way that ensures chunks are only

delayed by a single round at most. This means the total duration of

the round is greater than the largest link delay. However, users can

choose to use shorter chunks — they will have to maintain more

state between rounds in that case.

To encode �∗ we maintain most constraints from the MILP for-

mulation but need to modify the objective function and the bu�er

constraints to account for chunks arriving in future rounds. For
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Notation Description

Γ The function to get non-switch set of edges from the set of edges (Γ : � → �′). Therefore, �′ ⊆ 2#−(×#−( and (8, 9) ∈

�′ =⇒ (8, 9) ∈ � ∧ 8, 9 ∉ (.

Ω The function from a switch node to the set of direct-connect edges (Ω : ( → 2#−(×#−( ). Ω(B) = {(8, 9) | (8, B) ∈ � ∧ (B, 9) ∈

� ∧ (8, 9) ∉ �}

! The set of edges in the transformed graph (! = Γ(�) ∪
⋃

B∈( Ω(B)).

Table 5: Additional notation we need to model legacy switches.

Variable Description

' The set of rounds (' = {0, 1, 2, . . . R})

 The set of epochs in a round ( = {0, 1, 2, . . . , K}). The number of epochs in a round is constant and does not change with the

round.

 ′ The set of future epochs relevant for a round ( ′ = {0, 1, 2, . . . ,max∀(8, 9 ) ∈� ⌈
U8,9
g ⌉})

� The demand function (# × # ×� → {0, 1}) where �B,3,2,A represents whether destination 3 wants chunk with id 2 from node

B at the start of round A

�B,2,8, 9,:,A (boolean) whether chunk 2 of source B is going over link (8, 9) ∈ � at epoch : in round A

�B,2,8,:,A (boolean) whether chunk 2 of source B is in node 8’s bu�er at the start of epoch : in round A

&B,2,8,:,A (boolean) whether chunk 2 of source B is in node 8’s bu�er at the start of future epoch :′ in round A .

RB,2,3,:,A whether chunk 2 of source B is delivered to node 3 by the end of epoch :in round A

Table 6: New variables for the G∗ technique.

switches, we need to modify the �ow conservation constraints

because they do not bu�er chunks.

Look ahead constraints. To account for chunks that will arrive

in the subsequent epoch we need to maintain additional state. For

none switch nodes, if the chunk arrives in the �rst epoch of the

next round (:′ = 0) we have:

&B,=,2,0,A =

�B,=,2,K,A +
∑

∀ 9 :( 9,=) ∈�

�
B,9,=,2,K−⌈

U9,=
g ⌉,A

∀B, = ∈ # : = ∉ (,∀2 ∈ �

and for all later arrivals we have:

&B,=,2,: ′,A =

&B,=,2,: ′−1,A +
∑

∀ 9 :( 9,=) ∈�∧(: ′−⌈
U9,=
g ⌉ )<=0

�
B,9,=,2,K+: ′−⌈

U9,=
g ⌉,A

∀B, = ∈ # : = ∉ (,∀2 ∈ �,∀:′ ∈  ′ : :′ > 0.

These equations allow us to store in the variables& what chunks

are arriving in the next round. Notice how we also account for

bu�ers by �B,=,2,K,A in :
′
= 0 and by&B,=,2,: ′−1,A for the :

′
> 0 case.

Since the switches do not have large enough bu�ers we use the

following:

&B,=,2,:,A =
∑

∀ 9 :( 9,=) ∈�∧(: ′−⌈
U9,=
g ⌉ )<=0

�
B,9,=,2,K+: ′−⌈

U9,=
g ⌉,A

∀B, = ∈ # : = ∈ (,∀2 ∈ �,∀:′ ∈  ′ .

All that we have to do now is to set the bu�ers at the beginning

of each round A > 0 to & (we exclude A = 0 since there is no prior

round, and we can use the same initialization that we had earlier):

�B,=,2,0,A = &B,=,2,0,A−1

∀B, = ∈ # : B ≠ = ∧ = ∉ (,∀2 ∈ �, A > 0

For : > 0, if &B,=,2,:−1,A−1 = 0 and A > 0, : <= max ′ we have:

∀B, = ∈ # : = ∉ (,∀2 ∈ �,∀: ∈  : : > 0

�B,=,2,:,A =

�B,=,2,:−1,A +
∑

∀ 9 :( 9,=) ∈�

�
B,9,=,2,:−⌈

U9,=
g ⌉−1,A

+&B,=,2,:,A−1

otherwise:

∀B, = ∈ # : = ∉ (,∀2 ∈ �,∀: ∈  : : > 0

�B,=,2,:,A =

�B,=,2,:−1 +
∑

∀ 9 :( 9,=) ∈�

�
B,9,=,2,:−⌈

U9,=
g ⌉−1

Speci�cally, we are adding to the bu�er what is arriving from

the previous round. The two cases are there to ensure we account

for each arrival only once for non-switch nodes. The equations are

similar for switches:

∀B, = ∈ # : = ∈ (, ∀: ∈  : : > 0, ∀2 ∈ �

max
∀ 9 :(=,9 ) ∈�

�B,=,9,2,:,A ≤

{∑

∀ 9 :( 9,=) ∈� �B,9,=,2,+:−⌈
U9,=
g ⌉−1

+&B,=,2,:,A−1 A > 0, : <= max ′
∑

∀ 9 :( 9,=) ∈� �B,9,=,2,+:−⌈
U9,=
g ⌉−1

otherwise

but since switches do not bu�er chunks we incorporate them

into the �ow conservation constraints.
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Algorithm 1: This algorithm identi�es the number of

epochs we need to run the optimization with. We use the

resulting =4 to instantiate the general optimization — this

is an upper bound on the number of epochs we need, and

the optimization can automatically discover if a smaller

number of epochs is su�cient.

Input: D. The demand matrix.

Input: � (#, �). The topology.

Input: g>?C
Input: U8 9 . The latency cost of each link (8, 9) ∈ �.

Input: �8 9 . The capacity of each link (8, 9) ∈ �.

Input: �g . A set of candidate completion times.

Output: =4 . The upper bound on the number of epochs we

need.

1 for total_time ∈ �g do

2 for =4 ∈ {4, 8, 12} do

3 g ← total_time
=4

4 $?C, status← general_form(D, g, U,�, =4 ,� (#, �))

5 if status = feasible then

6 feasible_time← total_time

7 break

8 =4 ←
feasible_time

g>?C

9 return =4

The objective. We now need to motivate the optimization in each

round to get the chunks closer to the destination (while making it

even more pro�table to satisfy the demand fully). So �rst, we need

to automatically compute this additional payo�. To do this, we add

logical edges to the graph that allow nodes to form a clique. We

assign a weight to each of these edges, which we calculate using the

Floyd Warshall algorithm [14] and the values for U8 9 . The chunks

we send in this epoch that don’t contribute to satisfying a demand

are stored in our & variables. We now introduce a new variable:

%B,3,: ′,A — the total number of chunks coming from source B and

going towards destination3 that are currently on their way towards

the destination. We have:

%B,3,: ′,A ≤
∑

∀=∈#,∀2∈� :�=,3,2,A=1

&=,B,2,: ′,A ∀:′ ∈  ′,∀B, 3 ∈ #

∑

∀B∈#

%B,3,: ′,A =
∑

∀B∈#,∀2∈�

�B,3,2,A ∀:′ ∈  ′,∀3 ∈ #

we also modify the demands from round to round to remove the

demands we have already satis�ed. For A > 0 we have:

∀B, 3 ∈ #,∀2 ∈ �

�B,3,2,A =

{

0 �B,3,2,A−1 = 1, &B,3,2,max ′,A−1 = 1

�B,3,2,A−1 otherwise

Given these new values of� and % we can now add the following

to our objective:

Distance Objective(A ) =
∑

∀: ′∈ ′,∀B,3∈# :B≠3

W

(:′ + 1) (1 + �,B,3 )
%B,3,: ′,A+

∑

∀: ′∈ ′,∀B,3∈# :B=3

1

(:′ + 1)
%B,3,: ′,A

where the second term ensures having the chunk at the destination

gives more payo� to the optimization (W < 1).

E NUMBER OF EPOCHS

We provide a simple algorithm for �nding the number of epochs

to run the optimization with. This algorithm has no bearing on

the optimality of the solution as the optimization automatically

identi�es if less epochs are su�cient.

F EPOCH DURATION SET BASED ON THE
FASTEST LINK

To set the epoch duration based on the speed of the fastest link

in the LP we do not need to change anything: the LP supports

fractional chunks and handles this automatically. The MILP only

allows us to send whole chunks — if we set the epoch duration to

be lower than the transmission time of the chunk on the slowest

link we can never use that link: we need to modify both the �ow

conservation constraints and the capacity constraints to address

this issue.
We can model the �ow conservation constraints similar to how

we model U : we account for how many epochs it takes a chunk to

traverse the slowest link and change the value of X8 9 accordingly.

To model the capacity constraint, we need to ensure the number

of chunks on a link never exceeds its capacity. We �rst calculate

how many epochs we need to transmit the chunk over a link (^)

and modify the capacity constraints to:

Capacity Constraint
(

8, 9, :
)

≜
∑

:−^≤: ′≤:

∑

B∈#

∑

2∈�

�B,8, 9,: ′,2 ≤ ^)8 9g

Notice this capacity constraint ensures the same behavior we

had when we used the larger epoch duration.

G COMPARING TO SCCL INSTANCE

SCCL has twomodes: the least-steps and instance. We compare

TE-CCL to SCCL instance in Table 7.

H DETAILS OF EACH TOPOLOGY

We use DGX1, DGX2, NDv2, and internal topologies 1 and 2 for our

evaluation. Figure 13, Figure 14, and Figure 15 shows the topologies,

capacity and U we used for DGX2, NDv2 and AMD respectively.

DGX1 has 8 GPUs and is similar to a single chassis NDv2. Internal

topologies 1 and 2 are proprietary, and we cannot report numbers

for those.
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Collective (# chunks, #epochs) SCCL solver time (s) TE-CCL solver time (s) Di� in transfer time (%)

AllGather (1, 2) 0.3 0.09 0

(2, 3) 0.7 0.07 0

(3, 4) 1.8 0.19 0

(4, 5) 4.1 1.45 0

(5, 6) 11.2 8.96 0

(6, 7) 27.7 50.57 (11s) 0

AllToAll (1, 3) 8.8 0.11 33%

(3, 8) NA 0.18 NA

(8, 30) NA 1.88 NA

Table 7: Comparing TE-CCL’s runtime to SCCL. We use 25 KB chunks for these experiments and " = 0. The di�erence in

transfer time is
100(YIIR−ZKIIR)

YIIR . For all-to-all, we use our notation — the number of chunks represents the number of chunks

the sender wants to send to each destination (SCCL’s notation uses the number of chunks to mean the total number of chunks

the source needs to send).
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Figure 13: Two chassis DGX2 topology used by TE-CCL. Each chassis has 16 GPUs (8 GPUs are used for sending chunks to

another chassis, and 8 GPUs are used for receiving chunks from the other chassis). Each dashed link is 12.5 GBps with U = 2.6`B,

and each thick straight link is 125 GBps with U = 0.35`B in each direction. TACCL replaces the switch in each chassis and

connects each GPU in a chassis to every other GPU, e�ectively forming a clique and uses its uc-min strategy to minimize the

number of edges used.
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50 GBps with U = 0.7`B in each direction

25 GBps with U = 0.7`B in each direction

12.5 GBps with U = 1.3`B

Figure 14: Four chassis NDv2 topology used by TE-CCL. Each chassis has 8 GPUs connected with 50 GBps and 25 GBps links.

TACCL replaces the switch by connecting GPU 0 of a chassis to GPU 1 of all other chassis and constraints that only one of the

three links can be used at a given time.
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Table 8: Experimental results for TE-CCL and comparison to TACCL on NDv2 2 chassis topology.
Output

Bu�er Size

ED

(`s)

CT

(`s)

ST

(s)

AB

(GB/s)

TACCL

CT (`s)

TACCL

ST (s)

TACCL

AB (GB/s)
Improvement %

ED - Epoch Duration CT - Collective �nish Time ST- Solver Time

AB - Algorithmic Bandwidth = output bu�er size / collective time

NDv2 2 chassis AllToAll optimal epoch duration

1 GB 1250 320235.81 336.50 3.123 320049.4 1214.69 3.125 -0.058

256 MB 320 82000.00 307.33 3.122 81964.2 1217.56 3.123 -0.044

64 MB 80 20495.09 339.92 3.123 20532 1220.6 3.117 0.180

16 MB 20 5123.77 280.82 3.123 5164.4 1213.9 3.098 0.793

4 MB 5 1296.25 165.63 3.086 1324.2 1214.51 3.021 2.156

1 MB 1.25 325.28 189.47 3.074 359 1213.52 2.786 10.366

256 KB 0.32 85.52 218.50 2.993 115.72 1221.78 2.212 35.313

64 KB 0.08 23.30 161.99 2.747 50.34 860.88 1.271 116.052

16 KB 0.02 7.27 182.08 2.202 35.76 86.03 0.447 392.223

4 KB 0.02 4.64 69.58 0.862 32.16 31.14 0.125 592.134

1 KB 0.005 4.24 196.72 0.236 36.8 27.66 0.027 768.920

NDv2 2 chassis AllToAll max epoch duration

1 GB 5000 325000 14.82 3.077 320049.400 1214.692 3.125 -1.52

256 MB 1280.41 83226.63 14.36 3.076 81964.200 1217.557 3.123 -1.52

64 MB 320.10 20806.66 11.01 3.076 20532.000 1220.602 3.117 -1.32

16 MB 80.01 5200.42 9.96 3.077 5164.400 1213.903 3.098 -0.69

4 MB 20 1300.03 11.81 3.077 1324.200 1214.507 3.021 1.86

1 MB 5 340 10.85 2.941 359.000 1213.521 2.786 5.59

256 KB 1.28 88.32 9.97 2.899 115.720 1221.779 2.212 31.02

64 KB 0.32 24.32 10.46 2.632 50.340 860.875 1.271 106.99

16 KB 0.08 7.6 8.83 2.105 35.760 86.034 0.447 370.53

4 KB 0.02 4.5 20.90 0.889 32.115 31.139 0.125 613.67

1 KB 0.01 4.235 276.47 0.236 36.799 27.660 0.027 768.92

NDv2 2 chassis AllGather optimal epoch duration

1 GB 1250 43750 7201.05 22.86 53766.70 7.01 18.60 22.90

256 MB 320 11200 7214.16 22.86 12494.60 6.56 20.49 11.56

64 MB 80 2800 7209.46 22.86 3133.20 8.27 20.43 11.90
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Table 8 continued from previous page

16 MB 20 700 7208.70 22.86 - - - -

4 MB 5 190 152.60 21.05 216.50 8.37 18.48 13.95

1 MB 1.25 48.75 160.10 20.51 62.15 62.65 16.09 27.49

256 KB 0.32 14.72 59.55 17.39 25.26 11.17 10.13 71.60

64 KB 0.08 6.08 27.61 10.53 13.08 3.66 4.89 115.13

16 KB 0.02 4.44 18.80 3.60 12.68 6.34 1.26 185.59

4 KB 0.02 4.24 12.26 0.94 11.85 4.30 0.34 179.48

1 KB 0.005 4.135 50.28 0.24 10.16 3.02 0.1 145.68

NDv2 2 chassis AllGather early stop at 30% using optimal epoch duration

1 GB 1250 47500 2.66 21.05 53766.70 7.01 18.60 13.19

256 MB 320 12163.89 2.37 21.05 12494.60 6.56 20.49 2.72

64 MB 80 3920.31 2.45 16.33 3133.20 8.27 20.43 -20.08

16 MB 20 980.02 2.42 16.33 - - - -

4 MB 5 240 2.40 16.67 216.50 8.37 18.48 -9.79

1 MB 1.25 63.75 4.32 15.69 62.15 62.65 16.09 -2.51

256 KB 0.32 16.96 2.83 15.09 25.26 11.17 10.13 48.94

64 KB 0.08 6.32 3.94 10.13 13.08 3.66 4.89 106.96

16 KB 0.02 4.44 12.98 3.60 12.68 6.34 1.26 185.59

4 KB 0.02 4.24 10.17 0.94 11.85 4.30 0.34 179.48

1 KB 0.005 4.135 42.94 0.24 10.16 3.02 0.1 145.68

NDv2 2 Chassis AllGathermax epoch duration

1 GB 5000 50000 0.94 20 53766.70 7.01 18.60 7.53

256 MB 1280.41 12804.10 0.77 19.99 12494.60 6.56 20.49 -2.42

64 MB 320.10 3201.02 0.78 19.99 3133.20 8.27 20.43 -2.12

16 MB 80.01 800.06 0.77 20 - - - -

4 MB 20 200 0.77 20 216.50 8.37 18.48 8.25

1 MB 5 70 1.04 14.29 62.15 62.65 16.09 -11.21

256 KB 1.28 19.20 1.09 13.33 25.26 11.17 10.13 31.56

64 KB 0.32 7.68 1.74 8.33 13.08 3.66 4.89 70.31

16 KB 0.08 4.80 3.35 3.33 12.68 6.34 1.26 164.17

4 KB 0.02 4.24 21.56 0.94 11.85 4.30 0.34 179.48

1 KB 0.01 4.14 89.07 0.24 10.16 3.02 0.1 145.68
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200 GBps with U = 0.6`B in each direction

100 GBps with U = 0.6`B in each direction

50 GBps with U = 0.6`B in each direction

25 GBps with U = 0.75`B in each direction

Figure 15: Two chassis AMD topology used by TE-CCL. Each chassis has 16 GPUs connected with 200 GBps, 100 GBps and 50

GBps links. GPU pairs are connected to small switches in each chassis, which are all connected to a bigger switch. All switch

links are 25 GBps.
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